AD-A124 383 HIGHLIGHTS OF THE HISTORY OF YHE LAMBDA-CALCULUS(U}

WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER
J B ROSSER OCT 82 MRC-TSR-2441 DAAG29-80-C-0041

F/6 12/

UNCLASSIFIED

—
’ END

oate
Twen
ome

i i
— P L
i =

I Bt e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

?

"l_"n et o A 2o skt fiifding

LAMBDA-CALCULUS

1. Barkley Rosser

-~

9A 124383

Mathematics Research Center

610 Walnut Street
Madison, Wisconsin 53706

October 1982

ET_Received October 12, 1982)

S
=
(W
[
B

Sponsored by

U. $S. Army Research Office
P. 0. Box 12211

Regsearch Triangle Park
North Carolina 27709

MRC Technical Summary Report #2441

HIGHLIGATS OF THE 1IISTORY OF 'CHE

University of Wisconsin—Madison

Approved for public release
Distribution unlimited

oyl e 8 F3e A

UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER
HIGHLIGHTS OF THE HISTORY OF THE LAMBDA-CALCULUS
J. Barkley Rosser

" Technical Summary Report #2441
October 1982

!

A

*This is an account of not only the lambda-calculus but of its close

ABSTRACT

relative, the combinatory calculus. It begins with an introductory survey, so

that no previous knowledge is required. It is explained why these are of such

importance for computer software. The account is brought up to the present

time. It includes the shortest and simplest proof of the Church-Rosser
theorem, which is not yet published and appeared in a limited printing iﬁ
August 1982. It includes a model of the combinatory calculus, also not yet
published but available in 1982 in a limited printing. An introduction is

given to some revolutionary new developments of the combinatory calculus for

programming computers.
N

~

AMS (MOS) Subject Classifications: 01-aA65, 03-03, 03-B40

Key Words: A-calculus, combinatory calculus, foundations of programming

Work Unit Number 6 (Miscellaneous Topics)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

—/[) .

“ 77 SN RGREPL L

BT TR D O B D

= e, g

- SIGNIFICANCE AND EXPLANATION

% Programming for a computer went through a couple of major changes up to

the invention of FORTAN. Since then, thoug_h many competing programming
languages have been developed, the basics of programming have changed

little. In the last half dozen years, some revolutionary new ideas for
programming have appeared, involving the very fundamentals of the lambda-
calculus and the combinatory calculus. By giving an account of these from the

beginning, it is intended to make these revolutionary new ideas more easily

comprehensible.

. Dn'\
. -'.‘")'y !
. ‘ o

_‘ -

- e n e -

CIOIC TAB
U. =naounced

Justification__ _ -

j tocessien For
" TTIS GRA&I '
0

By
_Distribution/

|Avail andsepr
Dist | ®peeisl

LU VS

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.

—— b

HIGHLIGHTS OF THE HISTORY OF THE LAMBDA-CALCULUS
J. Barkley Rosser
Kleene-ness is next to GSdel-ness
1. BEARLY BRGINNINGS.

The lambda-calculus originated in order to study functions more carefully. It was
obgerved by Frege in 1893 (loo_ van Heijenoort 1967, p. 355) that it suffices to restrict
attention to functiona of a single argument. Por, suppose you wish a function to apply
to A and B to produce their sum, A + B. Let © be a function, of a single argument,
which when applied to A alone produces a new function, again of a single argument, whose
valus is A + B wvhen applied to B alona. Note that @ 1; not applied simultaneously
to A and B, but successively to A and then B; application to A alone produces an
intermediary function @(A), which gives A + B when later applied to B alone. That
is, A + B = (0(A))(B).

This method of reducing the use of a function, "+, of two argquments to proper use
of a related function, %0%, of one argument only, is often referred to as “currying”
because it was brought into prominence by the writings of H. B. Curry. Obviously, the

method can be extended to reduce the use of a function of still more arquments to proper

use of a related function of one argument only.

This is the way computers function. A program in a computer is a function of a single

argument. People who have not considered the matter carefully may think, when they write a

subroutine to add two numbers, that they have produced a program that is a function of two
arguments. But what happens when the program begins to run, to produce the sum A + B?

Pirst A 1is brought from memory. Suppose that at that instant the computer is completely
halted. What remains in the computer is a program, to be applied to any B that might be

forthcoming, to produce the sum of the given A and the forthcoming B. It is a function

©1982 ACM 0-89791-082-6; title as given here, publighed in August 1982, copied by
permission of the Association for Computing Machinery.

; Lo
Sponsored by the United States Army under Contract No. Du629-80<r:-q041.
t
i -]
| woo '3
Lt
j i 1 0
P o
Tk g | ~ ”
o] £ &
fro - Lol) Q el
o o e
no TR © -
O 1l M g o [&}
e (O -t e o] [A
" Bt o~ RS
: : Vb e
. PO
. n >
LY

[
(SN

Rvat

sndfer

:

[Y YO SRR S

Y, Vi, e

=R TR N P T PR e P

ERr=—as

avorare

=

T e i s

of one argqument, depending on the given A, to be applied to any B, to produce the sum
A+ B. It is Prege's intermediary function &(A).

Apparently Frege did not pursus the idea further. It was rediscovered independently
(see Schinfinkel 1924) together with the astonishing conclusion that all functions having
to do with the structure of functions can be built up out of only two basic functions, K
and 8. Let us adopt the notation that has been in vogue since then. Instead of writing
the value that one gets by applying the function P to A as P(A), we write (FA).

Omission of the outside parentheses will be usual. When more than two terms occur,

association shall be to the left; thus MNP denctes ((MN)P), but M(NP) denotes
(M(NP)). Then the sum of A and B would be written @AB.

The functions K and 8§ are such that
(1.1) KAB = A
(1.2) SABC = AC(BC) .

Yor a proof that all functions can be built up of K and 8, one can consult the
original Schinfinkel paper. Or one can consult the two early papers, Curry 1929 or Curry
1930.

Expressions built up out of X and 8 by application (that is, enclosing pairs in .
parentheses) are called "combinators.” Use of them, and study of their properties, is
called “"combinztory logic." Sometimes these terms are extended to apply when the
expressions are allowed to contain variables, or indeterminates, as well as K and 8.

. Suppose we have two functions, F and G (built up out of X and 5, of course)
such that by means of (1.1) and (1.2) one can show that
(1.3) FX = GX
for each X, or for an indeterminate X. This means that F and G take the same value
wvhenever they are applied to each X whatever, and so they ought to be the same

function. That is, one should have

(1.4) F=G.

Curry (see Curry 1930)

In general, one cannot prove (l.4) by means of (1l.1) and (1l.2).

contrived additional axioms such that one can prove (1.4) whenever (1l.3) holds for each
X. A system like this is said to have the extensional property.
Curry added axioms to enable him to prove additional equalities. Did he go too far,

80 that now any two functions can be proved equal to each other? He did not. Indeed, he

A D R+ P

was careful to prove a weak form of consistency, in that there are many pairs of functions

And, especially, X = S cannot be proved.

that cannot be proved equal to each other.

This gave a workable system, which illuminated many properties of functions. Por

instance, let M be built up from K, S, and the variable x. One can, using only K

and 8, build up a function P such that one can prove that

Px = M

by means of (1.1) and (1.2). P turns out to be a mixed up combination of KX's and §'s.

one would not have the least clue that Fx = M ghould hold.

Just from looking at F,

Because F is constructed in order to give the result PFx = M, it follows that

(1.5) FN = M[x:=N] ,

in which M[x:=N]) means the result of replacing each occurrence of x in M by N.

Py

Church (see Church 1932) proposed that the P in question be called XM. 1In this,

M is intentionally part of the name of the function, so that by inspection you can see

what you would get if you apply the function to x. Por his construct, Church decreed that

(1.6) (AxM)N = M[x:=N] ;

this accords exactly with (1.5).

If one starts with the left side of (1.6) and replaces it by the right side, this is

called a f-reduction. One is equally entitled to start with the right side of (1.6) and

replace it by the left side of (1.6); this is called a f-expansion.

Thus, to produce the @ that we had earlier, Church would use Jx(iy(xty)).

By

(1.6), one would have

(1.7) (Ax(Ay(x+y))IA = dy(A+y) o

By (1.6) again, one has

(1.8) (Ay(A+y))B = A+B .

3=

8o taking M(Ay(x+y)) to be @, one has
(1.9) OAB = (Ax(Ay(x+y)))AB = A+B
by two f~reductions.

The beauty of this is that at all stages of the process, one can tell by a simple
inspection what the reduced form of m. is going to be. This is the famous lambda-
calculus of Church. (Henceforth, we will write LC for "lambda-calculus.”) It does involve
one with having to be careful about free and bound occurrences of variables. In IJy(x+y),
the occurrence of x is free and both occurrences of y are bound.

One has to be careful not to make manipulations which change free occurrences of a
variable into bound ones. Thus, suppose one writeg @y. 1In i:his configuration, the
observed occurrence of h 4 is free. A blind adherence to (1.6) would give

oy = Myl{y+y) ,
8o that

oyz = z+z .

This is certainly not what is intended for @. The trouble is that the y, which
originally existed as a free occurrence of a variable in @y, has been put into I)y(y+y)
where its occurrence is now bound. Actually, when Church enunciated the rule (1.6) he was
careful to impose the restriction that it should not be used if some variable with free
occurrences in N should have those occurrences bound in M{x:=N). (In addition, one must
now understand M(x:=N] to mean the result of replacing each free occurrence of x in
M by N.) 1In order to cope with this contingency, Church instituted the o-step
(1.10) Ay = Az(M[ys=g]) .
NOTE: To avoid confusion of free and bound variables here, one must put the reatrictions
that there are no free occurrences of z in M, and that no occurrence of z in
M(ys=g] that resulted from replacing an occurrence of y in M by z is bound. Now we
have
(1.11) Oy = (Ax(Az(xtz)))y = Az(y+z) ;

the intermediate formula is got from the left one by an a-step. So one has

iy M o ey

Ty TR BT o103 i W oLs o et

e

1,0

(1.12) Oyx = {Az{y+z))x = y+x ,
which is just what € is aupposed to do.

If we can get from M ta N by a succession of steps, possibly null, each of which
is either an a-step or a f-reduction or a P-expansion, we say that M is convertible to
N; we write "M conv N*. If M conv N by a succession of steps, none of which is
a B-expansion, we say that M is reducible to N; we write “M red N".

John McCarthy worked several ideas of the IC into LISP. He clearly recognized
procedures as functions of one argument. In LC, such functions can be applied to each
other and give such functions when applied. 1In LISP, it is possible to apply one procedure
to another, and on occasion get another procedure.

As we said earlier, the K and S, and things built exclusively of them, are called
combinators. Can we commingle combinators and lambda-expressions? Yes indeed, with no
trouble whatever and indeed, variables, or indeterminates, may be freely included.

Church had decided that one should form AxM only in case there are free occurrences
of x in M. Thus, Church could not get a lambda-expression to correspond to K. It
could be done if one relaxes the requirement that there be at least one free occurrence
of x in M to form AxM., So the LC, as originally set up by Church, seems a trifle
weaker than the combinatory calculi of Schénfinkel and Curry. For present day
applications, either would serve perfectly well (this takes some proving) and the
difference is just something to niggle over, quite insignificant. originally, this was not
known, and Rosser (see Rosser 1935) invented a couple of other combinators, in place of
K and S, with which he set up an exact equivalent of the LC. Like Curry, his system had
the extensional property and a weak form of consistency. Hence the LC has these attributes
also.

The IC (and hence, the combinatory calculi) has a fixed point theorem.

Given a function, P, one can find a ¢ such that
(1.13) Fé¢= ¢,

Proof. Take

J ¢ = 99, where ¢ = MP(xx) .

CL 2T I AN

There is an obvious functional relationship between ¢ and F, namely

(1.14) = YF,
wvhere
(1.15) Y = Af((Axf{xx))(dxf(xx))) .

Oon pp. 177-179 of Curry and Feys 1958, Y is called the paradoxical combinator. The
property

(1.16) P(YP) = YP

for each P 1is noted, which the authors thought to be paradoxical. The property (1.16)
makes Y useful in some of the modern treatments of combinators. See p. 37 of Turner 1979

(first citation).

2. A _DEBACLE.

The IC and the combinatory calculi were fairly promptly embedded in systems which had
some of the earlier attributes of logical systems. See Church 1932 and Curry 1934. The
results turned out to be inconsistent. This was first proved in Kleene and Rosser 1935 by
a variation of the Richard paradox. Later, Curry got a simpler proof, related to the
Russell paradox. See Curry 1942. This has the following simple form. Suppose we have the
two familiar logical principles:

(2.1) POP

(2.2) (ro(POQA)D>((PDOQ ,

together with modus ponens (if P and P D Q, then Q). We undertake to prove an

arbitrary proposition A. We construct a ¢ such that

(2.3) =480

to do this, we take F = Ax(x D A) in the fixed point theorem. By (2.1), we gest
eDe. '

Applying (2.3) to the second & gives

4O (6D),

By (2.2) and modus ponens, we get

T A7 ey eA T T R S AT S oW Wi SRS ||

AT A IO TR, T 1 -

remn v

19

By (2.3) reversed, we get
¢.

By modus ponens and the last two formulas, we get
A

This is usually referred to as the Curry Paradox, by analogy with the Russell Faradox.

Pitch proposed to avoid this by weakening the ILC (or equivalent combinatory calculus)
80 that the fixed point theorem fails. He also weakened modus ponens a bit. See Fitch
1936 and Fitch 1952. He has proved consistency for his system, but it is much too weak to
be considered as a foundation for mathematics. He and his students have continued
intermittently to the present to come out with improvements, but it still remains extremely
weak.

Ackermann proposed keeping the full strength LC, but badly crippling implication. See
Ackermann 1950 and Ackermann 1953. He proved the consistency of the system, but it was
hopelessly weak as a foundation for mathematics, and I know of no recent interest in it.

Curry kept the full strength combinatory calculus, but added a fragmentary theory of
types and a weakened version of implication. He introduces a notion of functionality,

F, such that if Z is a function and X and Y are types, then FXYZ is to denote that
if U 4is of type X, then ZU is of type Y. See Curry 1934 and Curry 1936. It turned
out that the "natural” axioms for functionality lead to a contradiction, as shown in Curry
1955, Howevar, by imposing suitable restrictions, all is well. See Curry 1956. Since
then, Curry and his students have made extensive developments. Two major works, Curry and
Feys 1958 and Curry, Hindley, and Seldin 1972, are landmarks. Even so, adoption of the
system as a foundation for mathematics has not progressed at all, though the system has

some capability in that direction; see Cogan 1955,

7=

A RS

[

3. WHERE DO WE GO FROM HERE?

As we said, Pitch and Curry are continuing to develop their systems. However, there
is no likelihood that either will be adopted as a foundation for mathematics. Originally,
it was expected that the LC or a combinatory calculus should be a part of such a system.
Surprisingly enough, the LC (or a combinatory calculus) has turned out to be of importance
in its own right. So one has to ask the questions that are asked about any logical system.

1. Wwhat about consistency?

2. What about completeness?

3. Wwhat about models?

4. What about the connection with computers?

At the time when the LC and the combinatory calculi were being developed, one did not

agk the fourth question. Computers had not yet been invented!

4. WHAT ABOUT CONSISTENCY?

We observed earlier that the IC and the combinatory calculi have a weak consistency,
in that one cannot prove that both of any pair of functions are equal to each other.
Fairly early on (see Church and Rosser ‘936; reproduced in Church 194l1) a considerably
stronger form of consistency was proved for the LC, embodied in the Church-Rosser Theorem
(referred to hereafter as C-R-T).

Suppose X, red X, and X, red X,. Then there is an X; such that both X, red X3 and X,
red Xye

A lambda-formula is said to be in normal form if it has no part on which one can
perform a f~reduction. A lambda-formula X is said to have a normal form Y if Y is in
normal form and X conv Y. We can prove the following theorem,

If X has a normal form Y, then X redY and Y is unique, except possibly for a
few cosmetic o-steps.

One proves the first part of thlg by induction on the number of operations in
X conv Y. The idea is as follows. Suppose one goes from X to W, by

a f-expansion, next from W, to W, by a f-reduction, and finally from W, to Y a
1 2 2

[,

second f-reduction. Then Ll red X and W, red Y. So, by C-R-T, there is a W such
that X red W and Y red W. But Y is in normal form, so that in the reduction from Y
to W there cannot be any f-reducticns; only G-steps. So, except for cosmetic uses

of a-steps, Y is W, and we had X vred W. For uniqueness, suppose Z is another normal
form of X. Then it is also a normal formof Y. So Y red 2. But Y is in normal

form. So the reduction from Y to Z can consiat only of a-steps.

The lambda-formulas of interest mostly have normal forms. These normal forms
constitute a foundation, on which is erected an elaborate superstructure. However, each
normal form has its own individual superstructure, not overlapping the superstructures of
the other normal forms.

Because formulag of the LC can be identified with formulas of a combinatory calculus
and vice versa, there are superstructures in the combinatory calculus corresponding to
those of the 1LC.

In (l.1) and (1.2), one can consider going from left to right as a reduction. So one
can look for parallels to C-R-T, one can define normal forms, etc. There was much
investigation of these questions.

The original proof of C-R-T was fairly long, and very complicated. In Newman 1942,
the point was made that the proof was basically topological. Newman generalized the
universe of discourse, and defined a relation with properties similar to a f-reduction. He
proved a result similar to C-R-T by topological arguments. Curry, in Curry 1952,
generalized the Newman result, with the intention that it would be relevant to similar
considerations in the combinatory calculi. Unfortunately, it turned out that neither the
Newman result or the Curry generalization entailed C-R~T in the intended systems because
the systems did not satisfy the hypotheses of the key theorems. This was discovered by
David E. Schroer, whoge counterexample is recorded in Rosser 1956. 1In Schroer 1965 is
derived still further generalizations of the Newman and Curry results, which indeed do
entail C~R-T in assorted systems. As Schroer 1965 is 627 typed pages, this hardly

contributes to the cause of shorter and simpler proofs of C-R-T.

-9

Chapter 4 of Curry and Peys 1958 is devoted to a proof of C-R-T for the LC, and to

related matters. It is not reeccamended for light reading. In Hindley 1969 and Hindley 1974
are discussions of proofs of C-R-T for the IC and systems closely related thereto.

These various proofs all stemmed generally from the Newman approach, with an emphasis
on the topological structure. However, lambda-formulas and combinators have a marked,
though specialized, tree structure. Mitachke 1973 used the tree properties a bit in
deriving a proof of C-R-T. Rosen, in Rosen 1973, really went overboard. He worked with
general irues, and relationships between them. As lots of things have a tree structure,
his results have applications beyond proving C-R-T. He applies his results to the extended
NcCarthy calculus for recursive definition (see McCarthy 1960), and verifies a conjecture
in Morris 1968. He also applies his results to tree transducers in syntax-directed
compiling. With all that, the proof of C-R-T did not come easy. He had to prove C-R-T's
for several related systems, and then derive the C~R-T for the IC by some trickery.

Meanwhile, a genuine simplification for the proof of C-R-T had come in sight.

See Martin-L3f 1972. It is agreed that Martin-LSf got some of his ideas from lectures by
W. Tait. An exposition of the proof of C-R-T according to Tait and Martin~LAf appears as
Appendix 1 in Hindley, Lercher, and Seldin 1972. A shorter exposition appears on pp. 59-62
of Barendregt 1981, We will give what seems to us a still shorter and more perspicuous
proof of C-R-T.

What seems to be the main dAifficulty of the proof? Let us look at the minimal case.
Suppose X, has two parts, (Axw1)v, and (Axwz)vz. Let X, red X; by performing
a f-reduction on (mi)vi, for i= 1,2. If (Ml)vl and (Xxwz)v2 reside in totally
disjoint parts of X,¢ there is no trouble. To get Xy we perform & f-reduction on the
(kzuz)vz that still resides in X; and on the (btﬁl)vl that still resides in X,.

Note that the reductions from X; to X and from X, to X; each use exactly
one f-reduction.

But suppose that (Xtz)v2 is part of V,. X, will contain (Axwl)va, where Vv,
is the result of a fB-reduction of (Axwz)v2 inside V,. As a candidate for X;, we

perform a f-reduction on the (M1)v3 of Xy How about getting from X, to x37

-j0=-

L, P e s

. PRy G-/ 7 i~

i o i

PREN

Where X, had “""1"'1' X, will have W;[xi=v;]. If there had been only one free
occurrence of x in w, then Hllx:-vll will contain a corresponding V7 we change
this to Vy by a B-reduction on (xzwz)vz,

contain several free occurrences of x. Then W;(x:=V;] will contain several V,'s. Ve
can go through, and change them one after another to Va'l. which will result in X3+ But
there is no way we can get from X, to X, by a single B-reduction.

In the language of Barendregt 1981, p. 54, f-reduction does not have the diamond
property.

The difficulty is that it may take several f-reductions to get from X; to X3. This
should have suggested working with a string of p-reductions, instead of only one. Why it
took more than thirty years for this to occur to anyona isg a mystery.

If we call a f~reduction or a-step a step, then a string of them will be a walk. But
we cannot allow just any old string. What we are aiming for is that if o walk X
and X, walk X,, then there is an X; such that X; walk X; and X, walk X3. If
we put the right restrictions on the steps allowed in a walk, we can do this.

We frame our restrictions for a walk as follows.

1. A walk may contain no steps at all.

2. It may contain a-steps at will,

3. If a number of parts (Xxwi)v1 fail to overlap at all, the corresponding

f~reductions may be done in any order.

4. let (MxW)V be reduced to W(x:»V] in a @-reduction of the walk. Inside that
part, W(x:=V], no subsequent B-reductions may be performed in the walk, and indeed
no f~reduction of all of W(xi:=V], in case it has the requisite structure (which it
could). However, a-steps may be performed inside Wix:=v].

The relation —T—» on p. 60 of Barendraegt 1981 is likely closgely related to our
notion of a walk, but it is not exactly the same. For the key lemma, Barendregt uses
something like induction on the number of steps from X, to X; whereas we use induction
on the number of symbols in Xoe This makes quite a difference.

We need a lemma, which is about as follows.

11~

Suppose X walk Y. Then X[x:=P] walk Y[x:=P] by a completely parallel series

of B-reductions.

To see this, note that a-steps do nothing to the free occurrences of x.

A B-reduction can rearrange the free occurrences of x. It can even replicate them, as
would happen if the f-reduction were from (AyS)T to S[y:=T]; if there are several free
occurrences of y in S, they would each be replaced by T, and any free occurrences

of x in T would be thereby replicated.

So, if occurrences of P are put for the free occurrences of x in X, a completely
parallel series of B-reductions is possible, and all it will do is rearrange or replicate
the P's 3just as the walk from X to Y did for the free occurrences of x., At the end,
we just have Y[x:=P] as the result. The fact that the restrictions for a walk were
satisfied in going from X to Y assures us that they will be satisfied in going from
X[x:=P] to Y[x:=P).

Actually, the lemma is not quite true, because of the possibility of confusion of free
and bound variables. Already, before you try the first step from X(x:=P] to Y([x:=p],
you could be in trouble if some of the free variables in P became bound when P was put
for x in X. However, a very close relative of the lemma, sufficient for our purposes,
is true.

Lemma. Suppose X walk Y. In X, change all bound variables by a-steps to a set of
distinct variables that have no occurrences in X or P. This gives x', for which there

1 such that x1 walk Y! by essentially the same 8-reductions as were used for

is a Y
X walk Y. Then x‘[x:-P] walk Y‘[x:-P) by a completely parallel series of f-reductions.
We first note that there will be no need for o-steps in either the walk from x! to

1

Y or from x'[x:-P] to Y‘[x:-P]. All possibility of confusion of bound variables has

been sidestepped in changing from X to x‘, and we can now use the argument given

originally.

-12-

e T o Ao o gy g - gy

=t an

ot .

Note that this lemma is very nearly the same as proposition 2.1.17(i) on p. 28 of
Barendregt 1981l. It is also closely related to proposition 3.1l.16 on p. 55. 1In
Barendregt's terminology, our lemm~ says that a walk is substitutive.

Diamond Property. If X, walk X and X, walk Xos then there is an X3 such that
X, walk Xy and X, walk X,.

In other words, there is an X; which is the fourth vertex of the diamond, with a
walk along each edge.

Proof by induction on the number of symbols in Xoe

Case 1. 1If X, has a single aymbol, it is immediate.

Case 2. Let X, be lxno. Then X; must be lxui for i=1,2. Clearly we have
M, valk i, for i = 1,2. Bo there is a M3 such that M; walk My for i=1,2. Take
X3 to be Axns.

Case 3. Let X, be M N,

Subcase 1. X, 1is MN, with M, walk M; and N, walk Ny, all for i=1,2. Then
there are M, and Ny with M, walk M; and N; walk Ny, both for i=1,2. Take
X3 = M3Ny.

Subcase 2, M, is Aywo, X, is wlty:-wll, and X, is (Aywz)Nz. By restriction
4, the last f-reduction in X, walk X; had to be from (Nywl)Nl. 50 we have W, walk W,
and N, walk N,, both for i=l,2. Then there are W, and N3 such that W; walk W; and
N, walk N;, both for i=1,2. Then we have X, walk (hywz)ﬂs. and hence we take X, to
be w3(yz-u3l. There are various "1" in Hlly:-nll, but they are non-overlapping. So
we operate on each in turn, and have X; walk W,[y:=N;}. By our lemma, Wy (y:=N;] walk
"3(7"“3]' the latter being X3, except for some o-steps. Now the steps we took in going
from Hlly:-nal were all on Na'l that had been put for y's in W3+ So none of them
could violate restriction 4 as we go on down to wsly:-nal from Hlly:-ual. So we can put
these two walks together to conclude X, walk X3.

Subcase 3. Like subcase 2, except with X; and Xy interchanged. Make suitable

interchanges in the proof of subcase 2.

-13-

. S e

PRV —y T

e e A e PN

e s

€
H
1

Subcase 4. M, 1is lywo, and X, is W [y:=N;} for i=1,2. By restriction 4, the
last B-reduction in X, walk X; had to be from (‘ywi)"i' both for i=1,2. 80 we have
w, walk wy and N, walk Ny, both for i=1,2. So there are W,y and Ny such that
W, walk W, and N; walk Ny both for i=1,2. There are various Ny's in W, (y:=W;], but
they are non-overlapping. So we operate on each in turn, and have X; walk '1[7""31'
both for i=1,2. By our lemma, W,[y:=N;] walk Wy{y:=N;]}, both for i=1,2, except for
some o-steps. X; is waly:-u31. To get from X; down to X;, we have to combine two
walks, both for i=1,2, but the arqument for this goes as in subcase 2.

Now we prove something that looks like C-R-T.)

¢4 X, goas to X; by a succession 6! walks, both for i=1,2, then there is an
23 such that Xt goes to Xy by a succession of walks, both for i=],2.

The proof is so easy that, if we carry out the details for a special case, the whole
thing becomes obvious. 8o, let Xo walk "1 walk Wy walk X and
X, walk w, walk X,. By the Diamond Property, we can fill in "1" to be corners
in Figure 1.

Figure 1

As each f-reduction or o-step taken alone is & walk, C~R-T follows by the previous

result.

Although the proof in Newman 1942 failed to prove the C-R-T for the LC, it does prove

a C-R-T for a fairly general universe of discourse. Some cases of this have been found to

-14-

it

e v

e .

be useful, though they have not such in common with the IC. See Book 1982, and several of

the other authors cited in bibliographic references in Book 1982.

S. WHAT AROUT COMPLETENESS?
At first sight, it appears that the IC is so weak that it is absurd even to raise the

question. However, as indicated in Church 1932 and amplified in Xleene 1935 , the positive

integers can be defined in the 1C. If n is a positive integer, we let
AZ(A(L(E(eea(L(Ex))eead))) ,

where there are n f°s, dJdenote the integer n. This makes one form of recursive

definition easy. If P(n) is to be defined by

(5.1) F(l) = GA
(5.2) F(ntl) = G(Fn) ,
then we can take F to be
(5.3) An(nGA) .
With this definition,

Fl red GA

F2 red G(GA)

F3 red G(G(GA))

etc.
However, there is no zero in this system. One would prefer the recursive definition

to be given by
(5.4) F(l) = A
(5.5) r(ntl) = G(Fn) .
In Kleene 1936, Kleene worked out a way to 4o this. This opened the door to still more
general recursive definitions. More and wmore definitions of functions from integers to
integers vere discovered. Some never pudblished investigations by Rosser disclosed so many
that in about 1934 Church was led to conjecture that every effectively calculable function
from positive integers to positive integers is definable in the IC. It was known from

Chuzch and Rossexr 1936 that every function from positive integers to positive integers that

-18a

is definable in the IC is effectively calculable. So Church enunciated what is now known

as "Church's Thesis.”

Church's Thesis. Effectively calculable functions from positive integers to positive

integers are just those definable in the LC.

As "effectively calculable® is an intuitive notion, Church's Thesis is not susceptible

of proof. However, it states a strong, and quite unexpected, version of completeness.

In about this era, G3del and Kleene were trying to get a definition for “"general

recursive function.” Xleene gives a definition in Kleene 1936. He attributes it

to GSdel. GO&del thought that general recursiveness should be taken as the criterion of

However, in Kleene 1936 it is shown that general recursiveness is

effectively calculable.

the same as being definable in the LC. This lent strong support to Church’s Thesis.

Independently, Turing had been developing the abstract idea of a computer, the

so-called "Turing machine.” See Turing 1936. Turing thought that “effectively calculable”

should be taken to be the same as calculable on a Turing machine. But in Turing 1937, he

proved that that is the same as being definable in the LC. This result explains why the

lambda-calculus and the combinatory calculi can (and do) play such an important role in the

theory of computer programming, and such matters.

Independently, in Post 1936, Post had developed ideas very similar to those of

Later, in Post 1943, still another

Turing. Turing published first, by a very few months.

definition of "effectively calculable” was proposed, which turned out to be equivalent to

those already given. Still later, in Markov 1951, Markov gave yet another definition,

which was also proved to be equivalent. A translation of this appears as Markov 196l. 1In

Smullyan 1961, using his "elementary forwmal systems,” still another definition is given,

which is also equivalent.

R TR T AN - g ST A

With the development of actual computers, which are finite approximations for a

universal Turing machine, interest in all these matters has been much intensified. In

Kleene and Vesley 1965, on p. 3, the authors list 150 contributions to the subject by

October 15, 1963. By now there are far more.

™Y

Klesne's early developments in recursion theory were of much importance for
computing. However, though he still uses many notations from the LC, he has diverged far
from it into an area that is now cssentially of no use in computing, though active and of
interest to many people.

There have been some objections to Church's Thesis. In Moschovakis 1968 is given a
simultanecus review of four papers, by Jean Porte, Lfszld Kalmfr, RSzsa P€ter, and Elliott
Mendelson. The first three papers attempt in various ways to discredit Church’s Thesis.
The paper by Mendelson discusses the first three papers, and undertakes to show that their
criticisms are illfounded. 1In the opinion of the reviewer, he succeeds quite adequately.

I know of no recent attacks on Church's Thesis, and it seems to be generally accepted as an

important, if unorthodox, version of completeness for the LC.

6. WHAT ABOUT MODELS?

There is a classic theorem that says that, if a logic is consistent, it will have a
model; indeed a denumerable one. However, the LC is so different in structure from the
usual logics that the theorem does not apply to it.

Why does one wish a model? If one has a framework with a lot of structure, and the
logic is isomorphic to some part of the framework, then the structure in the framework can
contribute to your understanding of the logic. One can always manufacture a very
superficial model by taking equivalence classes of objects in the logic. The only
structure this has is what is forced on it by the logic itself. BSo no additional
understanding can come from studying the structure of the model. Such a model does little
good,

FoT a very long time, this was the only kind of model that was found for the LC.
Finally, with encouragement from Strachey, Dana Scott hit on a way of making some really
useful models. They could ba constructed either in the cstegory of topological spaces or
in the category of lattices. An exposition, “"Outline of a mathematical theory of
computation,” appears in pp. 169~176 of the Proc. Pourth Annual Princeton Conf. on

Information Sciences and Systems, 1970. 1In case this is inaccessible, another exposition

=T~

appears as the firal article in Engeler 1971. In Barendregt 1981 is given a model similar

to the Scott one, but in a still more general framework, namely the category of complete
partial orders. In one sense, this is good since one can derive still more properties of
the IC in this more general category. However, suppose one would like just to ses a model
without having to learn all the algebra involved in topological spaces, lattices, or
complete partial orders. Some people have been working in that direction, to get a model
without all the algebraic baggage. This is mostly available only in unpublished material,
such as Plotkin 1972, BEngeler 1979, and Meyer 1982; the latter gives a fairly complete and
coherent account. According to Meyer, the model originated with Plotkin, was improved by
Bngeler, and further improved by Meyer himself. Our account is taken from the Meyer paper.
start with a nonempty set, A; the unit class consisting of the ordered
pair <¢,$ will do, where ¢ is the null class. Enlarge A to the least set B
containing A and all ordered pairs <B8,b>, where B is a finite subset of B and b
is in B.

The model consists of all subsets of B. For two members, C and D, of the model,

define
(6.1) (cp) = {beB|<B,b>ec and BC D} .
To show that this contains a model of the combinatory calculus, we identify two
elements K and S:
(6.2) K = {<a,<8,5>>|bea and a,8 finite submets of B} .
(6.3) 8 = {<a,<B,<Y,b>>>|beay(fy) and a,B8,Y finite subsets of B} .
One verifies fairly easily that
(6.4) KCD = C
(6.5) SCDE = CE(DE)
for all elements of the model. A close relative of the extensional property holds; see
Meyer 1982.
8ince the IC is so closely related to the combinatory calculi, it is not surprising
that something very similar can be put together as a model for the LC. In Mayer 1982 there

are full details.

-18=

e

LR T e e AR % e mp 43 AL ST "o 5 2

7. T THE CONNRCTION WITH ?

This proceeds in two directions. One can use computers to manipulate combinators or
formulas of the LC, or one can use properties of combinators and the LC to help in
programming or to develop ideas of use for computers.

Looking to the first, the obvious approach would be to represent the combinators, or
formulas of the LC, as lists or arrays in the computer memory. In fact, these formulas are
tree structures, and might better be represented so on the computer, Rnowing the location
of only the root of the tree then suffices to reconstruct the entire tree. So the trees
(entire formulas) can be identified by single memory locations, instead of by elaborate
diagrams or linearizations thereof.

The idea is very simple. Suppose A and B are combinators, and we have put their
roots at memory locations a and b, Then we reprasent C = (AB) Dby locating its root at
memory location ¢; in ¢ we put the ordered pair of numbers a and b. The person who
wishes to know the structure of C is told to look at location c¢. There he finds
<a,b>, which tells him that C has the form (AB), a&and that to know the form of A he
should look in location a, and similarly for B.

Besides the convenience in referring to a formula, this allows economies of memory
which are not possible when a formula is represented by a list. FYor an extreme example,
suppose B = ((AA)(AA)), where A requires 1000 memory locations for its
repregentation. To represent B as a list would require four repetitions of the listing
of A, together with attendant parentheses; a total of 4006 locations. With the tree
repregentation, let A have its root at a; we may still suppose that the entire
representation of A fills 1000 locations. At some convenient memory location, 4, we
put <a,a>, which denotes U = (AA). Then at another empty memory location, b, we put
4,8, which denotes (DD). But (DD) 4is ((AA)(AA)) = B. Thus, with A represented in
1000 memory locations, we require only 1002 locations to represent ((AA)(AR)).

Aother advantage of the tree representation is that it lends itself to what is called
“lazy evaluation.” Suppose a part M occurs several times in a formula X. If X is

represented as a list, the several occurrences of M are each written out in full. Unless

-19-

ERPEIPITY. 7 TSP T PR S

extraordinary measures are taken, each of the occurrences of M will be evaluated
separately, and independently, in the course of evaluating X. However, with a tree
structure, M will occur only once, but with various pointers "pointing®™ to it. Hence, it
will be evalu;ted once only.

These, and many related matters, are taken up in Petznick 1970. Consider a typical
program on a computer, say for computing an approximation to the square root (two integers,
a mantissa and an exponent). If one inputs an approximation for a real number (a mantissa
and an exponent) the program will generate and output an approximation for the square root.
So the program defines a function. Naturally, it is a computable function. So (by one of
the equivalences supporting Church's Thesis) this function m st be expressible by means of
a combinatory formula. If suitable hardware, or software simulations thereof, is
available, the calculation can be done solely by combinatory manipulations.

Something of the sort had been proposed for lambda-formulas by Landin. For this
purpose, he defined and used what he calls SECD machines. See Landin 1965 or "A formal
description of ALGOL 60," pp. 266-294 in Steel 1966. However, this involved him in a very
difficult problem of handling the complicated substitutions properly. If he had used
combinatory formulas instead, this problem would be much simplified. Also, Landin tried to
superpose the lambda-formulas on top of the usual computer software. This produced a
greatly complicated assignment problem. If one would dispense with the usual computer
software, and work only with combinatory formulas stored in the memory (preferably as
trees) the assignment problem would simply disappear.

Petznick's thesis, Petznick 1970, showed that it is possible to design a computer to
work exclusively with combinatory formulas, stored as trees. There is no assigh.ent
problem, and application takes the place of substitution. As application is the basis of
the tree structure, it is handled automatically. The hardware one would have to build to
handle this would be quite simple. Or it can be handled with present hardware by a
suitable software simulation.

Petznick's thesis managed to evade everybody's attention, and nothing mor: was done in

that area for a while. But after some years, work similar to Petznick's, and extending it,

=20=

e

N S o AR Ty TIRPMIY VI L L

e

T R - 7 PR N W YA ST S P

S it e

.

1M L A o g D N e .- il

I 4

began to appear, and has quickly blossomed. It now engages the attention of a considerable
number of people, all of whom seem to be quite unaware of Petgnick’'s work.

There is quite a ferment of activity just now, and several papers were presented at

the 1982 ACM Symposium on LISP and Functional Programming at Pittsburgh; a set of

Proceedings is available under ACM order number 552820. It would surpass my powers as a

R e

soothsayer to determine what will emergs as the key ideas; perhaps some have not yet

emexrged.
I will sketch a couple of trains of development, to give the reader some sort of idea

TRk
e T

what is happening. 1In so doing, I may fail to note something that will be of major
importance, and so fail to give credit due to those who are working on it.

In Henderson and Morris 1976 appeared an idea for lazy evaluation. The two papers.
both cited as Turner 1979, carried this forward, and also showed how to condense
combinatory formulas very much, thereby alleviating what had been a problem for Petznick.
More on that last point is given in Hughes (to appear). There are now programs for
manipulating combinators directly. One is given in CRS/1. Another is SKIM, which was
announced in 1980, and is now being improved by a group at Cambridge University. Backus
1978 does not sesm to be in the main stream of this activity, but it has some quite novel
combinatory functions, and something interesting may evolve out of it.

It seems to be now established that operating directly on computers in combinatory
format is not only feasible, but has seme advantages. Even more useful results may be just
around the corner. Or they may have already been announced without my appreciating their

worth.

-21=

—r, T . -

BIBLIOGRAPHIC INFORMATION

Most references below are cited by author and date alone, as in "van Heijenoort

1967." Some are without author, as “CRS/1." Some references below are to unpublished

theses. Copies of some of these can be obtained from

University Microfilms International
A Xerox Publishing Company

ﬂ 300 N. Zeeb Road

Ann Arbor, M1 48106

Ackermann, W., "Widerspruchsfreier Aaufbau der Logik I. Typenfreies System ohne Tertium non
L datur,” Jour. Symb. Logic, vol. 15 (1950), pp. 33-57.

Ackermann, W., "Wwiderspruchfreier Aufbau einer typenfreier Logik. I,” Math. Zeit., vecl. 55

(1952), pp. 364-384; "II," Math. Zeit., vol. 57 (1953), pp. 155-166.

e

; Backus, John, "Can programming be liberated from tha von Neumann style? A functioial style

i and its algebra of programs,” Comm. Assoc. Comp. Mach., vol. 21 (1978), pp. 613-641.

Barendregt, H.P., "The lambda calculus,” North-Holland Publ. Co., 1981.

Book, Ronald V., "Confluent and other types of Thue systems,” Jour. Assoc. Comp. Mach.,
vol. 29 (1982), pp. 171-182.

Church, Alonzo, "A set of postulates for the foundation of logic," Annals of Math., second
series, vol. 33 (1932), pp. 346-366.

Church, Alonzo, "The calculi of lambda-conversion,” Annals of Math. Studies 6, Princeton
Univ., Pregs, 1941; 2nd ed., 1951.

1 Church, Alonzo, and Rosser, J. B., "Some properties of conversion," Trans. Amer. Math.

Soc., vol. 39 (1936), pp. 472-482.

Cogan, Edward J., "A formalization of the theory of sets from the point of view of

combinatory logic,” Zeit. Math. Logik Grundlagen Math., vol. 1 {(1955), pp. 198-240.

CRS/1 specification, available from Beale Electronic Systems Ltd., Wraysbury, UK.

T YOy

-22-

curry, H. B., "An analysis of logical substitution,” Amer. Jour. Math., vol. 51 (1929),
PpP. 363-384.

Curry, H. B., "Grundlagen der kombinatorischen Logik,"™ Amer. Jour. Math., vol. 52 (1930),
pP. 509-536.

Curry,, H. B., “Some properties of equality and implication in combinatory logic,”
Annals of Math., second series, vol. 35 (1934), pp. 849-860.

curry, H. B., "Punctionality in combinatory logic," Proc. Nat. Acad, Sci. U.S.A.,
vol. 20 (1934), pp. 584-590.

Curry, H. B., "Pirst properties of functionality in combinatory logic," Téhoku Math.
Jour., vol. 41 (1936), pp. 371-401.

Curry, H. B., "The inconsistency of certain formal logics,® Jour. Symb. Logic, vol. 7
(1942), pp. 115-117,

Curry, H. B., "A new proof of the Church-Rosser theorem," Nederl. Akad. Wetensch.
ser. A, vol. 55 (1952), (Indag. Math., vol. 14), pp. 16-23,

Curry, H. B., "The inconsistency of the full theory of combinatory functionality
(Abstract),” Jour. Symb. Logic, vol. 20 (195%), p. 91.

Curry, H. B., "Consistency of the theory of functionality (Abstract),” Jour. Symb. logic,
vol. 21 (1956), p. 110.

Curry, Haskell B., and Feys, Robert, "Combinatory logic," North-Holland Publ. Co., 1958.

Curry, Haskell B., Hindley, J. Roger, and Seldin, Jonathan P., "Combinatory logic,
vol, II,” North-Holland Publ. Co., 1972.

Engelear, E., editor, "Symposium on semantics of algorithmic languages,” Lecture Notes in
Mathematics, No. 188, Springer-Verlag, 1971.

Engeler, E., “"Algebras and cowbinators,” Berichte des Inst. fur Informatik, Nr. 32,
ETH Zurich, 12pp., 1979.

Pitch, P. B., "A system of formal logic without an analogue to the Curry W operator,”
Jour. Symb. Logic, vol. 1 (4936), pp. 92-100,

Pitch, P. B., "Symbolic logic, an introduction,” The Ronald Press Co., New York, 1952,

=23~

Henderson, P., and Morris, J. H., "A lazy evaluator,” Proc. 3rd annual ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages, pp. 95-103, Atlanta, 1976.

Hindley, R., "An abstract form of the Church-Rosser Theorem. I,” Jour. of Symbolic Logic,
vol. 14 (1969), pp. 545-560,

Hindley, R., "An abstract Church-Rosser Theorem. II: Applications,” Jour. of Symbolic

Logic, vol. 19 (1974), pp. 1-21.

Hindley, J.R., Lercher, B., and Seldin, J.P., "Introduction to combinatory logic,” London
Mathematical Society Lecture Note Series 7, Cambridge Univ. Press, 1972.

Hughes, R. J. M., "Graph-reduction with supercombinators,” Oxford University Programming
Research Group technical monograph PRG-28 (to appear).

Kleene, S. C., "A theory of positive integers in formal logic," Amer. Jour. Math., vol. 57
(1935), pp. 153-173, pp. 219-244.

Xleene, S. C., "A-definability and recursiveness,” Duke Math. Jour., vol. 2 (1936),
pPP. 340-353.

Kleene, S. C., and Rosser, J. B., "The inconsistency of certain formal logics,” Annals
of Math., second series, vol. 36 {1935), pp. 630-636.

Kleene, S.C., and Vesley, R.E., "The foundations of intuitionistic mathematics,™
North-Holland Publ. Co., 1965.

Landin, P.J., "A correspondence between ALGOL 60 and Church's lamb:ig-¢otatio#;” womm,
Assoc. Computing Machinery, vol. 8 (1965), Part I, pp. 89-103, eart II, pp. 158-16S.

Markov, A. A., "Teoriya algorifmov (Theory of algorithms),” Trudy Mat. Inst. Steklov,
vol. 38 (1951, pp. 176-189.

Markov, A. A., "Theory of algorithms,” No. OTS 60-51085, U.S. Department of Commerce,
Office of Technical Services 1961.

Martin-L3f, P., "An intuitionistic theory of types,” manuscript, University of Stockholm,
1972.

McCarthy, J., "Recursive functions of symbolic expressions and their computation by

machine,” Comm. Assoc. Computing Machinery, vol. 3 (1960), pp. 184-195.

Meyer, Albert R., "What is a model of the lambda calculus?” 1982. To appear in
Information and Control, vol. 52.

Mitschke, G., "Ein algebraischer Beweis fir das Church-Rosser Theorem,”
Archiv. fir mathematische Logik, vol. 15 (1973), pp. 146-157.

Norris, J.H., Jr., "Lambda~calculus models of programming languages,” MAC-TR-57, M.I.T.
Project MAC, Cambridge, Mass. 1968,

Moschovakis, Y. N., A review, Jour. Symb. Logic, vol., 33 (1968), pp. 471-472,

Newman, M. H. A., “On theories with a combinatorial definition of “"equivalence,”™
Annals of Math., second edition, vol. 43 (1942), pp. 223-243

Petznick, George W., "Combinatory programming,” Ph.D. thesis, Univ. of Wisconsin, Madison,
Wis., 1970. Publication 70-24812 of University Microfilme Int.

Plotkin, G.D., "A set-theoretical definition of application,” Memorandum MIP-R-95, School
of Artificial Intelligence, Univ. of Edinburgh, 32 pp., 1972.

Post, Emil L., "Finite combinatory processes. Formulation I," Jour. Symbolic Logic,
vol. 1 (1936), pp. 103-105.

Post, E. L., "Formal reductions of the general combinatorial decision problem,” Amer.

Jour, Math., vol. 65 (1943), pp. 197-215.

Rosen, B.K., "Tree manipulation systems and Church-Rosser theorems,” Jour. Assoc. Computing
Machinery, vol. 20 (1973), pp. 160-187,

Rosser, J. B., "A mathematical logic without variables,” Annals of Math., second series,
vol. 36 (3935), pp. 127-150, and Duke Math. Jour., vol. 1 (1935), pp. 328-35S5.

Rosser, J. Barkley, Review of Curry, "A new proof of the Church-Roaser theorem,” Jour. of

Symbolic Logic, vol. 21 (1956), p. 377,
Schinfinkel, Moses, "Uber die Bausteine der mathematischen Logik,” Math. Ann., vol. 92

(1924), pp. 305-316.
Schroer, David E., "The Church-Rosser theorem,” Ph.D. thesis, Cornell Univ., June 196S.

Publication 66-41 of University Microfilms, Int.

Swmullyan, R. M., "Theory of formal systems,”™ Annals of Math. Studies 47, Princeton Univ,

Press, 1961.

T - —rrer

Steel, J.B., Jr., editor, "Pormal language description languages for computer programming,”
Proc. IFIP Working Conference on Formal Language Description Languages, North-Holland
Publishing Co., 1966.

Turing, A. M., "On computable numbers, with an application to the Entscheidungsproblem,”
Proc. London Math. Soc., second series, vol. 42 (1936), pp. 230-265. ™A correction,”

vol. 43 (1937), pp. 544-546.

3
j
!
i
2
]
[
5

Turing, A.M., "Computability and A-definability,” Jour. of Symbolic Logic, vol. 2 (1937),
PP 153-163.

Turner, D. A., "A new implementation technique for applicative languages,” Software-

e

Practice and Experience, vol. 9 (1979), pp. 31-49.
Turner, D. A., "Another algorithm for bracket abstraction,® Jour. Symb. Logic,
vol. 44 (1979), pp. 267-270.

van Heijenoort, Jean, "From Prege to G&del," Harvard Univ. Press, Cambridge, 1967. 1

[R————
A

JBR/ed

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Bntered)

REPORT DOCUMENTATION PAGE prriEAD INSTRUCTIONS -
N NUM 2. GOVT ACCESSION u01 3. RECIPIENT'S CATALOG NUMBER
2441 DAY 3
& TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Summary Report - no specific
Highlights of the History of the re n riod
Lambda~-Calculus 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(®) §. CONTRACY OR GRANT NUMBER(s)
J. Barkley Rosser DAAG29-80-C-0041
3. PERPORMING ORGANIZATION NAME ANO ADDRESS 0. PROGRAM ELEMENT, PROJECT, TASK |
Mathematics Research Center, University of !::r::.l)::: uniy "“"';"_
610 Walnut Street Wisconsin mscelhnm“mm“p ics
| Madison, Wisconsin 53706
11, CONTROLLWIG OF FICE NAME AND ADDRESS 12. REPOAT DATE
U. S. Army Research Office October 1982
P.O. Box 12211 5. NUMBER OF PAGES
Research Trlangle Park, North Carolina 27709 26
MONITORING A NAM ¢ from Controlling Office) 15. SECURITY CLASS, (of thie report)
UNCLASSIFIED
"Wr?—_m

[BiTRIBUTION STATENENT (of #hie Repar)
Approved for public release; distribution uniimited.

17. OISTRIBUTION STATEMENT (of the abeivact entered in Blook 20, il diifecent lrem Report)

r— —tu—
16. SUPPLEMENTARY NOTRS

19. KEY WORDS (Continue on slde it y and identily by block number)

A-calculus, combinatory calculus, foundations of programming

20. ABSTRACT (Continue on reverse side il necesesty and identify by block number)
This is an account of not only the lambda-calculus but of its close

relative, the combinatory calculus. It begins with an introductory survey, so
that no previous knowledge is required. It is explained why these are of such
importance for computer software. The account is brought up to the present
time. It includes the shortest and simplest proof of the Church-Rosserx

(continued)
DD ,on'ys 1673 woimion oF 1 nov 68 18 OssoLETR UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAOE Deta
ekt At e S IR B e OO PRI IR © 5 B vt =

ABSTRACT (continued)

theorem, which is not yet published and appeared in a limited printing in
August 1982. It includes a model of the combinatory calculus, also not yet
published but available in 1982 in a limited printing. An introduction is
given to some revolutionary new developments of the combinatory calculus for

programming computers.

!
’?
i
!
i
]
i
d

